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Theory Review

Ellis-Jaffe Sum Rule (MS Scheme) ( Fiis Tae

- Nachtmann (1973)

OPE for the Nachtmann moment of the
nucleon structure function
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Renormalization scale independent Wilson G0 e ) — CA’(Q)HA
coefficients and matrix elements

At twist 2: matrix elements of (flavor) non- Tt = e
singlet axial current

At twist 4: reduced matrix elements of R? = giG,, »YPt%  for details, see for example:

twist 6: important to fit the data Campanario, Pineda (2005)




Theory Review

Bjorken Sum Rule (MS Scheme)
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twist 2 twist 4

' Larin & Vi 1991
FOI‘ E] & B] Sum I'uleS arin & Vermaseren (1991)

Larin, Ritbergen & Vermaseren

(1997)
Wilson Coefficients at twist-2 are known to four loops | Baikov, Chetyrkin & Kuhn (2010)

J

gA 1S the neutron beta-decay constant 94 = 1.2695 + 0.0029

‘ N
ag is the hyperon decay constant ag = 0.572 = 0.019 (/’ Campanario, Pineda (2005) ’

other matrix elements need to be fitted from the data

data is available for wide range of Q? values




Data,

Ellis-Jatte Sum Rule
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Data,

Bjorken Sum Rule

JLab CLAS EG1b (0.05 < Q% < 2.92 GeV?)
JLab Hall A E94010/CLAS EGla

JLab CLAS EGla
HERMES

E143

E155

SMC

Data vs. MS prediction (O(a?)]
N4LO :
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(f Deur et. al. (2008) )




i Ellis-Jaffe

@rder by order
. Comparison
with MS

@® JLab CLASEGIb
O JLab Hall A E94010/CLAS EGla
[0 JLab CLAS EGla

HERMES

perturbation series
diverges due to
renormalon ambiguity or

factorial growth

Thus power corrections
are also unstable in MS

OPE !




Renormalons

in d Snap ShOt ( for a detailed review, See
r Beneke (1999)

Factorial growth in pert. series € =) anai™"

a, ~ n!

Arise due to IR-sensitivities in the loop-
integral: in MS IR-region is included in the
loop integrals

can be calculated to all orders in pert. theogéwm- - %D%

with large nf approximation

strength of the renormalon ambiguity can be

-
quantified perturbatively (Hoang, AJ, Stewart,

C = P, Ajop x div.integral Scimemi (2008)

/

perturbative




Test for renormalon

via renormalon sum rule

~
(Hoang, A]J, Scimemi,
- Stewart (to appear)

i

Strength of renormalon in Cg

same 1s true
for Cy

rescaling
parameter




Finiteness of Observable

renormalon cancellations in OPE

renormalon

My G4 (Q) cancellation

‘renorwmalon cancels /

: between Ciand f;

—_ wmay have a renormalon
canceling a subleading
renormalon in Gz, o

B 3 g A ]’Yo °/(2B0)
My” = M7 (Q) — M7'(Q) = \Cr(Q) o 27Q2 @

Luke, Manohar,
Savage (1994)

e renormalons in Wilson coefficients cancel (

against higher twist matrix elements

~

J

Examples where this happens: ® R-ratio
. ® heavy meson mass-splitting (B-B* and D-D*) e Ellis-Jaffe & Bjorken sum rule




MSR Scheme e 1 e,

Stewart (2009)
a solution to the problem ——— ¢

o subtract the asymptotic growth from Wilson
coetficients

» add it back to the corresponding matrix element
at higher twist

R%2C1(Q) 1 -
(- ¢ (R

0 "= Cio)

R is the IR subtraction scale in the Wilson coefficient (Aqcp S R)



MSR Scheme

scholium

both Wilson coefficient and matrix element are now free
of the renormalon ambiguity

overall OPE does not change but gives reliable
predictions, converges faster.

power corrections will be of their true size (~Aqcp) and
won’t depend on the order in the perturbation theory

new MSR OPE has features of Wilsonian OPE, i.e.,
Wilson coetficients contain power like terms

matrix elements in MSR and MS are perturbatively
related




° | o =
R-evolution =y

resumming IR-logs in Wilson coefficients

d Jra Solution of this
RE Co(Q; R) = — =5 C1(Q)7[as(R), equation resums large

logs of R/Q

Analogy with u-RGE

R

Mo R}

J fluctuations absorbed
\ in the Wilson

. Coefficients )

fluctuations absorbed

in the matrix element
increasing p : less UV

increasing R : more IR
fluctuations in C and

fluctuations in the matrix
elements and less in C

: more in matrix elements



OPE in MSR
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Lets compare theory predictions from leading
twist in MSR scheme and then fit for matrix
elements at higher twist




Comparison with Data

Ellis-Jatfe sum rule at leading twist in MSR

without a fit to power corrections (1 parameter)

Naive fit with Q > 2GeV data only in MS:
(4 Go = 0.155 £ 0.018(expt.) T nr (th.) = 0/155 SN
(N°LL)

Ro-variation (0.7 GeV < Ry < 1.2 GeV)

perturbative (central for Ro=1 GeV)

perturbative




Order by 2
- Order .

0.14
0.12}
0.10}

éEllis—]affe sum rule

at leading twist

10 10 =0
0.24 :
| effects of resummation e
0.22:- B, 00 Gy Campanario, Pineda (2005)

MP0.20}
018}
0.16]

resummations

matter when
0.14} logs are large!

0.12}




Comparison with Data

Bjorken sum rule at leading twist in MSR
without a fit to power corrections

M K Ro-variation (0.7 GeV < Ry < 1.2 GeV)

@ JLab CLAS EGIDb
O JLab Hall A E94010/CLAS EGla
[0 JLab CLAS EGla

perturbative (central for
Ro=1 GeV)

¢ ey
Yommm —

.

perturbative




FltS for power corrections
EJSR: MSR vs. MS

o we do 4-parameter fit to the global data for Ellis-Jaffe sum rule

o we take half the error as systematic and 100% correlation in systematic errors
as our model for correlation matrix
MS
= (B +£) (Gev?) | 52fo (GeV?) | hi + ko (GeV?)
0.0526 —0.0713 0.0107
0.0593 —0.0603 0.0081

0.0350 = (E 0.0039
—0.0893 0.1899 —0.0132

MSR (Ro=1 GeV)

MSR MSR
i 2
98 (f312 e f836 ) (GeV?)

=B fMSR (GeV?) | hp + ho (GeV?)
0.0526 —0.0713 0.0107
0.0399 NS 0.0095
0.0568 —0.0912 0.0048

0.0999 —0.0892 0.0050




FltS for power corrections
BijSR: MSR vs. MS

we do 2-parameter fit with only JLab CLAS EG1b data for Bjorken sum rule:
latest data, largest data set from single experiment, and spans both pert. and
non. pert. regions

100% correlation in correlated systematic errors is assumed

MS

order

=2 f (GeV?)

hg (GeV?)

X?/dof

tree

— (s

0.0884

0.41

1 — loop

—0.0455

0.0318

0.38

2 — loop

—0.0045

0.0182

ol large errors

3 — loop

0.0116

0.0160

MSR (Ro = GeV)

—4 rMSR
O

(GeV?)

hp (GeV?)

0.41

and large

correlations !!

—0.1751

0.0884

—0.0857

0.0302

=0 2]

—0.0083

—0.0355

—0.0034




Fits for power corrections

Error matrix from expt. & theory errors

do —8< S fsMSR> —8 vsr

9 9 i A

12 36 hi + ho

e il G T 121 10723163 ¢ 100
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O 5.45 - 1072 23 A et
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—4
=~ é\/ISR hi

ag 0.0006
— = 0.0156 + 0.0025(expt.)T2-9906 (¢} ) 4
; +0.0003 > FASR = —0.036 % 0.07(expt.) 551 (th.)
MSR % 8MSR> = 0.056 = 0.008(expt.) 003 (th.)
his + hg = 0.005 £ 0.003(expt.)T3-9% (th.)

—8
= S (089 4 0015 (expt )70 550 (th)

hg = —0.003 £ 0.04(expt.) 2002 (th.
all f; are shown for Rgp =1 GeV o (expt.) L9003 (th.)




EJSR in MSR including
poOwer correotlons

: ‘ 'QL'I'
MSR theory
- error band




BjSR in MSR including
power correotions

JLab CLAS EG1b
perturbative | JLab Hall A E94010/CLAS EGla
JLab CLAS EGla
HERMES
E143
E155
B sMmcC

experimental

here, theory errors
are smaller than

experimental

1.0

Fitted power corrections
run as expected.
Same is true in EJSR

expected running |
® fit




Conclusions

o Obtained stable OPE in new MSR scheme
o Resummation of logs of Q/R using the R-RGE

o Obtained reliable fits for higher twist matrix
elements




